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Abstract

Assembly tasks by robots have traditionally depended on simple sensing systems and
the robot manufacturers programming language. However, this restricts the use of
robots in complex manufacturing operations. An alternative to robot programming
is the creation of self-adaptive robots based on Artificial Neural Networks (ANN'’s) in
order to use industrial manipulators in unstructured working environments.

The research presented in this article shows how force sensing data can be used by
an ANN to map contact force states with robot’s motion. The methodology has been
succesfully tested during assembly tasks showing that an industrial robot can learn
different operations. The method is generic and it has been tested using two industrial
manipulators. '

1 Introduction

Industrial robots are reliable machines. The success of the operation is based
on the accuracy of the robot itself and the precise knowledge of the environ-
ment. i.e. information about the geometry of the parts to be assembled, located,
machined, welded, etc. Combining these elements and using the manufactur-
ers programming language efficient programs can be written. When parame-
ters change, the robot program has to be amended to take into account new
conditions. The adaptation to these new conditions is explicitly given by the
programmer. Industrial robots are currently being programmed using this tech-
nique, hence, robots are still unable to be self-adaptive to varying conditions
and this is possibly one of the major drawbacks that has limited their extensive
use in manufacturing. :
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Techniques are sought to provide self—adaptat'ion for robots. Robot'; manip-
ulators operate in real world situations with a hlg}'l degree of u-ncertamty and
require sensing systems to compensate from potential errors during ope.ratiOnS,
Uncertainties come from a wide variety of sources such as robot.posn;ioning
errors, gear backlash, arm deflection, ageing of mechanisms-and disturbances,
Controlling all the above aspects would certainly be a very difficult task, there-
fore a simpler approach based on force control is preferred. By using force
control the overall effect of the contact force between the environment and the
manipulator are considered as a whole. Robots can also recognise force/torque
patterns and operate in unstructured environments specifically performing as-
sembly tasks.

Related work using ANN is reviewed first. The system architecture is de-
scribed and the nature of the force patterns explained. Based on this back-
ground the ANN Adaptive Resonance Theory (ART) is presented continuing
with the description of the Neural Network Controller (NNC). Experimental re-
sults showing the NNC's performance are discussed and finally some conclusions

given.

2 Connectionist Models and Related Work

Force control can be roughly divided in Model-based and Connectionist-based
approaches. The model-based approach takes as much information of the sys-
tem and environment as possible. This information includes localisation of the
parts, geometry of the parts, materials, friction, etc. The connectionist-based
approach is based on connectionist models and its robustness relies on the in-
formation given during the training stage that implicitly considers all of the
above parameters. Model-based methods do not offer a complete solution due
to the uncertainties associated during assembly as mentioned earlier. On the
other hand, connectionist-based techniques have proved to work reliably when
uncertainty is involved due to their generalisation property.

The use of connectionist models in robot control to solve the problem of
assembling parts under uncertainty has been demonstrated in a number of pub-
lications, either in simulations (1], (4], (5], or being implemented on real robots
[6], (7], [8]. In these methods, Reinforcement Learning (RL), unsupervised and
supervised type networks have been used. The reinforcement algorithm imple-
mented by V. Gullapalli demonstrated to be able to learn circular and square
peg insertions. The network showed a good performance after 150 trials with
insertion times lower than 100 time steps [9]. Although the learning capability
demonstrated during experiments improved over time the network is unable to
generalise over different geometries. Insertion are reported with both circular
and square geometries, however, when inserting the square peg, its rotation
around the vertical axis was restricted otherwise the insertion would not have
})een po§sibl-e. M. Howarth followed a similar approach, using Backpropagation
In combination with reinforcement learning. During simulation it was demon-
strated that 300 learning cycles were needed to achieve a minimum error level
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with his best network topology during circular insertions [8]. A cycle meant to
be an actual motion that diminished the forces acting on the peg. For the square
peg, the number of cycles increased dramatically to 3750 cycles. These figures
are important, especially when fast learning is desired during assembly. On the
other hand, E. Cervera using SOM networks and a Zebra robot (same used by
Gullapalli) developed similar insertions as the experiments developed by Gul-
lapalli. Cervera in comparison with Gullapalli improved the autonomy of the
system by obviating the knowledge of the part location and used only relative
motions. However, the trade-off with this approach was the increment of the
number of trials to achieve the insertion [6], the best insertions were achieved af-
ter 1000 trials. During Cervera’'s experiments the network considered 75 contact
states and only 8 out of 12 possible motion directions were allowed. For square
peg insertions, there were needed 4000 trials to reach 66% success of insertion
and that did not improved any further. According to Cervera's statement, “
We suspect that the architecture is suitable, but the system lacks the necessary
information for solving the task”. The situation clearly recognises the necessity
to embed new information in the control system as it is needed, which is likely
to be achieved with an architecture such as ART.

3 The Research

In our research, the robot is provided only with contact force information and
a Primitive Knowledge Base (PKB), which is an initial contact force-action
mapping that bias its initial reactions to constrained forces. No information is
given about the localisation of the parts. The arm increases its knowledge on-
line based on the success of the predicted motion. The robot actually increases
and enhances its knowledge as the operation progresses. The time that the
robot takes to complete a similar operation is reduced and also mistakes made
earlier do not recur, which demonstrates the new expertise of the robot.

The design of the novel Neural Network Controller (NNC) is founded on
the strength of ART networks to learn incrementally. The new information is
acquired as the operation develops without affecting the knowledge that was
previously learnt. The Fuzzy ARTMAP algorithm is used and the NNC train-
ing made on-line. The number of contact force patterns that the NNC can
accommodate in its knowledge is limited only to memory storage. The switch-
ing mechanism of the NNC is regulated by the development of the operation.
New knowledge information is only accepted in the Knowledge Base when it
has strongly contributed towards the success of the assembly. The resulting
Enhanced Knowledge Base (EKB) at the end of the assembly can be used for
similar operations. Results on industrial robots demonstrate that the robot’s
skill improves effectively and the insertion times and the errors diminish over
time. Furthermore this is, to the best knowledge of the authors, the first time
the Fuzzy ARTMAP network has been applied to an industrial robot manipu-
lator.
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4 System Architecture

The hardware architecture is formed by an indus.trial mfaster computer in whic
the DSP based F/T sensor card resides, the industrial manipulator Kuk-
KR15, KRC2 controller, Kuka Control Panel (KCP) and JR3 F/T sensor

illustrated in Figure 1. The main units of the robot system are the Kp¢
controller and the robot arm itself. Power and data are transmitted betwee
the two units through two interconnecting cables. The KRC2 controller hou,
the components that control and power the robot arm. The master comput,
communicates with the controller via serial port using the Xon/Xoff Prot.
col. Additionally, the robot is also provided wit‘h vision and 8peec.h recognitioy
systems, which enable the robot to recognise simple 2D geometries and tq

commanded via voice. For further details on these other systems the reader

referred to [3]

FIT SIGNAL MICROPHONE

Figure 1: System Architecture

5 The problem and nature of forces

Figure 2(a) shows a typical peg in hole insertion, which is a canonical operation
for performance assessment. The force traces occurring during this type
operation are given in Figure 2(b).

This type of signal is normally acquired by using a F /T sensor mounted in ]
robot’s wrist. The sensor provides the required input information to the NNC-
The signal patterns contain information regarding the force and torque “felt
at the robot wrist. With this information is possible to determine how muc
force is being applied to the end-effector or gripper! and how these forces affect

1'_The gripper is a mechanical device to grasp and hold the assembly part. which normally
consist of two or more fingers.
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Figure 2: (a) Peg-in-hole insertion (b)Contact force

the orientation of the peg by means of the moment value and sign. Although
the graph only shows the moment information, the information available to the
NNC is a F/T vector containing six elements i.e. fx, fy, fz, mx, my and mz.

5.1 Nature of contact forces

Peg-in-hole operations were carried out using pegs with different cross-section:
circular, square and square with a rounded corner, (this peg will henceforth be
referred to as a radiused-square peg). The female parts were made with chamfer
at 45°. A typical force trace of the insertion and extraction of the square peg
is shown in Figure 3a. It should be noted that magnitudes were scaled to have
better interpretation of the proportionality and similarity properties between
force and moment signals. Signals corresponding to Z axis (insertion direction
in tool coordinates) are not given since they were completely different.

It was observed that signals corresponding to peg insertions with symmet-
ric cross-section (square and circular) followed a similar pattern, while for the
radiused-square peg insertion the patterns were totally different. This occurred
because the distribution of the contact forces on the pegs were also dissimilar
due to the non-symmetric shape of the peg. Therefore, it can be said that the
type of pattern depends on the magnitude of the force applied during assembly
and the shape of the peg but, it is important to mention that this assumption is
valid only when both mating pairs are aligned, that is, the peg has been aligned
perpendicular to the female component. Additionaly, the type of proportion-
ality and cross-correlation changes according to the offset location of the peg
whitin the X-Y plane quadrants shown in Figure 3b.

The peg and the female block are shown in top view. The female component
has been enlarged to make obvious the placement of the peg within quadrants.
The level of cross-correlation between force and moment patterns depends on the
placement of the peg within these quadrants. An important observation is that
the correlation was related to the symmetry of the mating pairs. Circular-and
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Figure 3: (a) Insertion-extraction square peg  (b) Symmetry and contact foree,

square pegs showed higher correlation (infinite rotational symmetry) compareq
to the radiused-square peg (one rotational symmetry).

The complexity of the system becomes evident, especially if the infinite
number of patterns that can be generated through the assembly process
considered. To deal with this complexity the proposed NNC has to classify
recognise these patterns first.

6 ART and FuzzyARTMAP

The Adaptive Resonance Theory (ART) was developed by Stephen Grossberg
and Gail Carpenter at Boston University. Different model variations have been
developed to date based on the original ART-1 algorithm [10]. The mechanics

a basic ART module are as follows: It consists of two subsystems as illustrated
in Figure 4. The attentional subsystem is made up of two layers of nodes F; and
F3. In an ART network, information in the form of processing-element output
reverberates back and forth between layers. If a stable resonance takes place
learning or adaptation can occur. On the other hand, the orienting subsystem
is in charge of resetting the attentional subsystem when an unfamiliar event
occurs, B :

A resonant state can be attained in one of two ways. If the network has learned
previously to recognise an input vector, then a resonant state will be achieved
quickly when that input vector is presented. During resonance, the adaptation
process will reinforce the memory of the stored pattern. If the input vector
not immediately recognised, the network will rapidly search through its stored
patterns looking for a match. If no match is found, the network will enter a rés
onant state whereupon the new pattern will be stored for the first time. Thus:
the network responds quickly to previously learned data, yet remains able
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Figure 4: ART architecture

- learn when novel data is presented, hence solving the so-called stability-plasticity
dilemma. The activity of a node in the F} or F3 layer is called short-term mem-
ory (STM) whereas the adaptive weights are called long-term memory (LTM).
Gain controls handle the discrete presentation of the input signals. A vigilance
parameter measures how much mismatch is tolerated between the input data
and the stored patterns, which can be used to control the category coarseness
control of the classifier.

Supervised learning is also possible through ARTMAP that uses two ART
modules or its variants, such as Fuzzy ARTMAP (FAM) that incorporates fuzzy
set theory operations in order to handle analogue data between 0 and 1 (11).
The NNC was designed based on this FAM network due to its capabilities of fast
incremental learning (typically one epoch). The mechanics of the NNC which
incorporates the FAM network is explained in the next section.

7 Neural Network Controller (NNC)

The functional structure of the assembly system is illustrated in Figure 5. The
FAM is the heart of the NNC. The controller includes three additional modules.
The Knowledge Base that stores the initial information related to the geometry
of the assembling parts. This information is used only during the first assembly
operation. later this is enhanced by patterns that favour the assembly and whose
inclusion is regulated by the Pattern Selector Module. The Pattern Selector
section keeps track of the F/T patterns and verifies whether the action is good
enough to allow the FAM network to be retrained. If this is the case, the switch
SW is closed and the corresponding pattern-action provided to the FAM for
on-line retraining. _

Future predictions will be based on this newly trained FAM network. The
Automated Motion module basically is in charge of sending the incremental
motion request to the robot controller. External components to the NNC are
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Figure 5: Neural Network Controller (NNC)

the robot controller, image system, the manipulator itself and the F/T sensq,
that provides the pattern information. The programs for the NNC were createq
using Visual C++ 6.0 and implemented in a 800MHz Pentium III Industria

Computer.

7.1 Initial training and PKB formation

The formation of the PKB basically consists of showing the robot how to
act to individual components of the F/T vector. The influence of each vector
component requires a motion opposite to the direction of the applied force
diminish its effect. The procedure is illustrated in Figure 6. For simplicity, only
the lower arm of the manipulator has been shown.

Figure 6: Training Procedure
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Every motion of this type is referred to as a Primitive Motion (PM) and
the idea is to teach the robot where to move when single F/T components, i.e.
fx, fy, fz, mx, my, or mz are applied to the workpiece. Figure 6 illustrates
the PM needed to diminish the corresponding constraint force in all possible
motions. The storage of the F/T vector and the PM will form the PKB that is
required to start the assembly for the very first time. Once the first insertion
has been completed, the robot may possibly have increased its knowledge. If
so, the PKB is enhanced and an Enhanced Knowledge Base (EKB) version will
be used during the following insertion.

The PKB used during our experiments is shown in Figure 7, The F/T data
from the sensor was scaled to the range [0,1], where the extreme values 0 and 1
corresponded to a force of -151b and +151b respectively. Negative values were
assigned to the interval [0,0.5) and positive values were assigned to the interval
(0.5,1). It should be noted that the origin in the graph is set to 0.5, where
positive and negative values are represented in the upper and lower halves of
the graph respectively. Every column corresponded to an input vector to the
network. The corresponding assigned output vector is shown at the top of the
graph for each pattern.

PRIMITIVE KNOWLEDGE BASE (PXB)
X X Y Y I+ T R R Ryt By R R

y “tr s iy W |
| 1 |

PATTERNS

Figure 7: PKB

8 Pattern-Motion selection and knowledge en-
hancement

There are potential problems associated with the learning mechanism which
are solved by the Pattern-Motion Selection module. The robot should continue
moving in the insertion direction if, and only if, a minimum force value has been
reached. This situation should trigger the learning mechanism in order to allow
the acquisition and learning of the pattern-action pair that produced such a
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situation. In the event of continual learning after having re.ached this p'oint, the
performance of the NNC might decay. This situation is SIml'lar tc.> what is knowy,
as overtraining, overfitting or overlearning in ANNs. At this point the learning
should be stopped because if the robot learns other patterns under the aboye
circumstances, eventually the minimum force value will be different leading
wrong motions. The same applies to the condition when the end-effector meetg
a force higher than the force limit. There should not be any further learning
during this situation since learning a higher force would probably damage the
sensor. ’ .
The above situations can be resumed in three fundamental questions:
1. What is a good motion?
2. How to recover from errors?
3. Which motions should or should not be learned?

Having an assembly system which is solely guided by contact force states,
the criterion to decide whether the motion was good enough to be learnt
based on the following expression:

Fafter <0.1# Fbefofe (1)

Fajter and Fyegore are computed using the following equation:

F = fx2+ fy? + fz2 + mz? + my? + mz? (2)

Expression 1 means that if the total force after the incremental motion
significantly reduced then that pattern-action will be considered good to be
included in the knowledge base. Experiments showed that if this threshold
value was set higher (i.e. > 0.3 * Fy.sor) the network became very sensitive and
showed overtraining behaviour.

Forces that are higher than the value given by 0.1 * Fy.ore and lower than
the Flimi¢ are still good values. However, the corresponding pattern-action pair
will only be used during network recall. This situation is illustrated in Figure
8 that shows three possible situations: learning, recall and error recovery. The

third area is a situation where F > Fiimit. In this situation the user is alerted
and asked to reposition the arm.

Learning Recall S ——
f—/H A — A .
S — ! i
| R kit
0 OIF e Fre Fa Coastraint force

Figure 8: Learning, Recall and Error Recovery

Therfe will b.e ambiguous situations in which learning should not be permit-
ted. -Thls applies to patterns in the insertion direction (usually Z direction)-
Consider downward movements in the Z- direction. At the time the peg makes
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contact with the t:emale block, t.here r.nay well be a motion prediction in the
7+ direction- This recovery action will certainly diminish the contact forces
and will satisfy the condltlon-glv.en b?r the expression 1 in order to learn the
force.action pair. However,.th'ls §1tuatlon is redundant since it was given when
the PKB was formed and it is likely that it will corrupt the PKB. Similarly
learning should not b_e allowed wl?en. the arm is in free-space. In this situation:
Fugter and Fpe fore will be very similar and again learning another pattern in
the Z- direction will be redundant. Both situations were tested experimentally
py the author and revealed that an unstable situation may appear if further
learning is allowed in the insertion direction.

After the pattern-action has satisfied expression 1 and the prediction direc-
tion is not in the Z direction, the pattern is allowed to be included in the new
uexpertise” of the robot, the EKB. Patterns that do not satisfy expression 1
and whose values are lower than the Fiim; will only be used to recall previous
knowledge. The knowledge refinement process will continue in the NNC until
the end-condition is satisfied.

9 Results

The testbed for the assembly experiments is shown in Figure 9a and a typical
peg in chamfered hole insertion is shown in Figure 9b. The Intelligent assembly
was carried out using aluminium pegs with different cross-sectional geometry:
circular, square and radiused-square. Clearances between pegs and mating pairs
were 0.1 mm. The assembly was ended when 3/4 of the body of the peg was
inside the hole.

Figure 9: (a) Testbed (b) Peg in hole assembly operation

The Fuzzy ARTMAP network parameters during experiments were set' for
fast learning (learning rate = 1). The base vigilance pg had a low value since
it has to be incremented during internal operations. Pmap
much higher to make the network more selective creating as many
Possible.

The vigilance parameters used for the experi
are as follows: p; = 0.2 (base vigilance), Pmap

and p, were set
clusters as

ments reported in this article
— 0.7and pp = 09.
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9.1 Expertise test

Results from several peg-in-hole operations have shown that the robot can ac.

quire manipulative assembly skills. At the starting of the operation the robot
has only the PKB which is being enhanced though the assemblies. The robot
demonstrates its expertise by reducing the number of alignment motions and
consequently the insertion speed. The acquisition of the skill takes approxi.

mately 1 minute [2].
Figure 10a and Figure 10b illustrate two different learning situations jn
this operation. Figure 10a shows an insertion directed by the NNC and with
hat the NNC was allowed to learn new patterns

learning enabled, this meant t
if the expression Fgfeer < 0.1F;nitiat Was satisfied. After 14 insertions the robot
had learned 9 new patterns, which complemented the knowledge base. From

this insertion onwards there were no further patterns learned.

Clrcular Charnfered Pog Insertion
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allowed to learn contact states within the chamfer hence the NNC generated
motions based only on its initial PKB. This resulted in motions that produced an
excessive fz. As aresult, the NNC predicted a series of compensatory movements
in Z+ and Ry- to recover from these situations. The robot was ultimately able to
insert the workpiece, however the performance was poorer in terms of alignment
and consequently speed.

It can clearly be observed that the same operation with the same offset can
be achieved more efficiently and faster if the robot uses the EKB. In other words
the robot shows its dexterity when it is allowed to use its expertise. ’

9.2 Density of data and knowledge acquisition

The capability of generalisation and knowledge acquisition of the NNC has been
demonstrated. Patterns that reduce significantly the contact forces during ma-
nipulations were acquired into the knowledge base and learnt. In the circular
chamfered insertion example the network was initially trained with the PKB
containing the 12 possible patterns associated with the robot’s 6 DOF. This in-
formation biased the initial learning by creating 12 categories to allocate every
possible motion direction. From these results, it was verified that subsequent
patterns corresponding to contact states within the chamfer were effectively al-
located into these categories. However, the pattern population within certain
categories produced high density of data within regions in the feature space.
For instance in X+ direction, which is explained below.

During the chamfered circular peg insertion only four patterns were learnt.
These patterns corresponded to the X+, X-, Y+ and Y-. This can be appreci-
ated in Figure 11a that shows the nature of learned patterns. The new patterns
were valuable to speed up the insertion and to improve the insertion trajectory
as it was shown during the test. However, these patterns were present within the
data more than once and a total of 13 patterns were acquired after 14 insertions
which implied that certain categories were more populated.

As it can be seen, patterns belonging to the same category were very similar.
The patterns corresponding to the X+ direction were allowed to be learnt 8
times. This implied that the contact forces were significantly reduced in eight
occasions. This high number of patterns populated more the feature space in
that area, which is represented in Figure 11b.

For simplicity, only four major areas of action (X+, X-, Y+ and Y-) are
represented. Initially, the main groups are formed, this is represented by the
big black dots as illustrated at the beginning of the operation using what has
been termed PKB. The smaller dots represent additional patterns that have bgen
clustered within the same major region. As it is observed, the region belor.nglng
to the X+ direction was more populated than in the others. The high.densny of
data only implies that there are more data in the region and the cost is memory
space. However, since the criteria to learn new patterns was the condition
given by the expression Fyfeer < 0.1 % Ficfore, then as the learning progresses,
a reduction in contact forces is expected. as it was demonstrated during th'e
experiments, since the robot became more skillful. Being this statement true, 1t
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Figure 11: (a) Learned patterns during insertion (b) Data density

is also true that the knowledge acquisition becomes more strict. This obeys to
the fact that forces are smaller as the robot is more skillful and from the above
expression forces have also to be smaller to be accepted into the EKB. Also,
as the robot’s dexterity improved, the trend in the number of patterns that
were accepted into the EKB decreased. The above expression for allowing the
patterns to be learnt resuited to be a criterion to stop automatically the learning.
With this reasoning in mind, it can be demonstrated that the density does not
corrupt the selectivity of the NNC, but only affects the memory resources to
allocate the learned patterns.

10 Conclusions

Results from our experiments demonstrate that industrial manipulators can
learn manipulative skills on-line using only contact force pattern information.
:I‘he use of the Fuzzy ARTMAP based Controller has provided the on-line learn-
ing capability needed by the task. The robot is able to learn incrementally new
patterns and consequently new assembles and to improve effectively its skills
fr?m expgrience. The methodology is generic and has been tested in two indus-
trial manipulators [12], [2]. On going work in looking at the implementation of
an adaptive preprocessing stage which will allow the system to have the input
Eatte;nl values scalgd according to the current input range. The design of a Mul-
imodal ART architecture to reinforce the confidence in the motion prediction

h . ) . )
' afs been.envnsag'ed. With this architecture we expect to fuse image and tactile
information to aid complex operations.
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